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AbslracL The mean-field saddle-point lheory for k ing spin models with long-range 
interactions is rewritlen in lerms of the eigenvalues and eigenvectors of the interaction 
matrix. l h i s  gives a nalural division of long-range models into two classes: those where 
the rank of the interaction matrix is finite (in the Limit N - m); and the saddle- 

other weaker conditions) and those where the interaction malrix has a divergent rank. 
In the taller case the saddle-pint integral method cannot be directly applied to the 
partilion function. In the former case of the simply solvable models lhere are natural 
order parameters associated with the eigenvenors of the non-zem eigenvalues which 
characterize the system. It will k shown that models in this clas are also described 
by Curie-Weiss mean-field type equations (S;) = tanh@(C, J;,(S,)). l l i s  class of 
systems, where the interaction matrix has a finite rank, is very large and includes: ( I )  
long-range ferromagnetic bond disorder model; (2) systems with Kac type inleranions of 
the form yexp(-yli - j l )  (where y + 0 as N -+ m); (3) separable random site spin 
glass models. These three I p e s  of models will be solved and interpreted in terms of the 
behaviour of lhe eigenvalues and eigenvectors of their interaction matrices. In the case 
of the site disorder spin glass models the van Hemmen model will be used to illustrate 
our appmach and a simple general solulion of  the disordered phase of this mode! will 
also k presented. 

pin!  integrz! mr Ihp pUni!iQn r!Jnai-n p2n lp dirpC!!y m2!uz!ea_ (subject !- %"er?.! 

1. Introduction 

king spin models with long-range interactions are usually divided into two classes: 
separable and non-separable. These two classifications are usually used in relation to 
spin glass models (Benamira ef af 1985) but can easily be extended to cover any long- 
range Ising spin model. In fact one of the purposes of this paper is to give a different, 
andvery sTmpIe, mathematical description o f  long-range Ising spin models in terms of 
the rank of the interaction matrix. This very naturally divides them into two classes. 
These WO classes can be associated with the terms separable and non-separable. 

Separable models are systems that are considered to be exactly solvable (normally 
without recourse to a replica type calculation) and are described by a finite set 
of order parameters having a finite number of stable states. Solving these models 
typically involves rewriting the Hamitonian in the following way 

P 
H = -csjJjjsj = H(u, ,u , , .  . . , u p )  = cui 

k = l  . .  
' I  
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where p is finite and the new spin variables uk are linear combinations of the original 
spins, ub = xi  aisi .  Thus the Hamiltonian is an additively separable function in 
terms of the new variables U hence the use of the name 'separable' to describe these 
systems. These models can then be solved by applying the Gaussian transformation 
to linearize the spin terms (allowing the spin trace to be performed) and then the 
saddle-point integral method can be used to evaluate the partition function in the 
thermodynamic limit. Some simple examples of separable site disorder spin glasses 
can be found in Grensing and Kiihn (1987) and Choy and Sherrington (1984). In 
the next section of this paper we will show that a natural extension of the definition 
of models in this class are systems whose interaction matrix is of finite rank in the 
thermodynamic limit. The simplest example of a model of this type is the long-range 
ferromagnet studied by Kac (1968) where all the interactions take the same value 
J . .  = J , / N ,  V i , j  i # j ,  where N is the system size. The interaction matrix for 
t& model has rank 1 and the model is characterized by only one order parameter, 
the magnetization, and only has two possible stable states at low temperature. 

Non-separable models are models which cannot he  described by a finite set of 
order parameters. Where solvable they are typically described in terms of order 
parameterfunctions or an infinite set of order parameter type equations. In the 
next section we will show that systems of this type have an interaction matrix with 
a diverging rank in the thermodynamic limit. The SK spin glass (Sherrington and 
Kirkpatrick 1975) is the best known model of this type (see Mezard a al (1986) 
for a review containing the most important papers on this model) where, in what is 
considered to be the true solution of this model given by Parisi (Mezrad ef al 1986), 
the spin glass order parameter q is an order parameter function. For this model 
the TAP (Mezard el a f  1986, Thouless et a1 1977) equations, although different, are 
the analogy of the Curie-Weiss mean-field equations for separable models. The TAP 
equations cannot be reformulated in terms of a finite number of order parameter type 
equations like the separable models. It should be noted that there are other more 
easily solvable non-separable models of the site disorder type which were studied by 
van Hemmen ef al (1986) and have order parameter functions as solutions. 

In the next section of this paper we will present a generalization of the calculation 
used to solve the so called separable models. In doing this we will develop a set 
of conditions on the validity of the application of the saddle-point method to our 
resulting partition function which is related to the rank of the original interaction 
matrix. We will then show that all models having an interaction matrix of finite 
rank are described by the Curie-Weiss mean-field equations. In sections 3 and 4 
we will study some examples of models with an interaction matrix of finite rank. 
More specifically in section 4 we will study and solve a long-range ferromagnetic 
bond disorder model and in section 4 we will study a one-dimensional ferromagnetic 
model with a Kac type exponential interaction of the form Jij = yexp(-yli - j l )  
in the limit y -+ 0 as N -, w. In section 5 we will look at the class of separable 
random site spin glass models in the light of our mean-field calculation using the van 
Hemmen model (van Hemmen et ai 1986, Choy and Sherrington 1984) to illustrate 
the important points. 

Mean-field fheoty for long-range Ising spin models 

2. Generalized mean-field theory 

Consider a system of N Ising spins Si with no external field defined by the 



A Canning 4725 

Hamiltonian 

the sum being over all values of i and j. As yet, we make no assumptions about 
the form of the interactions. Thus, with the appropriate choice of the interaction 
matrix J, this system can describe short-range, long-range or even disordered models. 
Orthogonally diagonalizing the interaction matrix J we can write the Hamiltonian as 

where A,, (q = 1 , 2 , .  . . , N )  are the eigenvectors of J, with corresponding normalized 
eigenvectors V,. Writing the Hamiltonian like this we can see that all Hamiltonians 
are in a sense separable. The important property for the system to be simply solvable 
is that the number of separable terms must be finite. Using standard techniques the 
Gaussian transformation 

can now be used to introduce variables z, associated with each eigenvector giving 

The spins are now decoupled and the trace over the spins can be performed giving, 
after rescaling (z - Jmrz), 

The normal way to proceed in mean-field problems is now to by and apply the 
saddle-point method which for our purposes can be expressed as 

in the limit N + m where z:, are the absolute maxima of the function g ( z )  and 
C,, are finite constants. For the application of the saddle-point method to be valid, 
the function g ( z )  must have a well defined functional form in the limit of large N .  
In particular, if g ( z )  is a function of a tixed finite number of variables zn. in the 
limit N + m, and its functional form becomes independent of N in this limit then 
the saddle-point method can be applied to the integral. We can now develop a set 
of conditions on the interaction matrix J such that the saddle-point method can be 
applied to our integral equation 6. These are: 
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(i) the number of non-zero eigenvalues (the rank R(J))  must be finite and inde- 
pendent of N in the large N limit; 

(ii) the values of the set of non-zero eigenvalues &,U = 1, ..., s, s finite, must 
be themselves finite and independent of N in the large N limit; 

(iii) the elements of the eigenvectors V9, associated with the non-zero eigenvalues, 
must be such that the second term in the exponent (the ( l / N ) l n [  ] term) has a well 
defined limit independent of N in the large N limit. 

In general the first condition will only be true when interactions depend explicitly 
on N. This condition allows all the N - s variables in the integral corresponding to 
zero eigenvalues to be explicitly integrated out since they are now all simple Gaussian 
integrals. The remaining integral to be evaluated is now over a finite number of 
variables xy, U = 1,. . . , s. Conditions (ii) and (iii) guarantee that the exponent in 
the integral has the desired functional form independent of N in the large N limit. 

It is- condition (i) which excludes this calc;lation from being valid for short- 
range models and also some random long-range models such as the SK spin glass 
(Sherrington and Kirkpatrick 1975, 1978) or the Hopfield neural network model 
( h i t  el a1 1985). In all of these systems the  number of non-zero finite eigenvalues 
scales with the system size (Edwards and Jones (1976) and Opper (1989) for the 
eigenvalue spectra of the interaction matrix of the SK spin glass and the Hopfield 
neural network). 

In the case of solvable long-range interaction models, which we will study in 
this paper, it is usually necessary to choose a non-zero value for the diagonal terms 
J;;  in order to satisfy condition (i). These diagonal elements have to be chosen to 
preserve the symmetry of the problem (see examples in the next sections) and can be 
absorbed into the Hamiltonian by the subtraction of a constant equal to their sum. 
This constant does not, in general, contribute to the free energy per site and does 
not affect the thermodynamics of the system. 

Condition (ii) typically means that the interactions must be chosen to scale in- 
versely with some power of N. We will see this explicitly with the examples studied 
in this paper. This condition is also important from a physical point of view so that 
we have a finite free energy per site in the thermodynamic limit. Condition (iii) is 
included for completeness and its physical interpretation is unclear. The ( l / N ) l n [  ] 
term in the integral is an infinite sum which must be convergent in the thermodynamic 
limit. We are not aware of any physically interesting choices of the interaction matrix 
which satisfy conditions (i) and (ii) and not condition (iii) but it may be possible to 
choose a pathological matrix satisfying conditions (i) and (ii) but not (iii). 

Assuming conditions (i) to (iii) are met for a given interaction matrix we can 
apply the saddle-point method to the integral in equation (6) (after the N - s other 
variables have been integrated out) and we can associate the function in the exponent 
with the free energy of the system. The free energy per site is thus given by 

the sum E, now being over the finite set of variables corresponding to the non-zero 
eigenvalues. We have defined a new set of variables my = .,/A. The values of 
mq the free energy corresponding to thermal equilibrium are those which minimize 
it ( t h s  corresponds to evaluating the integral by the saddle-point approximation) and 
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these are given by 

The free energy barriers between minima scale as N so in the thermodynamic 
limit all minima (global and local) of the free energy function will correspond to 
stable states (in the sense that their lifetimes diverge with N). 

lb obtain a physical interpretation of the parameters m, we add external fields 

hi = h,  at all sites which favour condensation into one of the minima in the free 
energy surface. It can then be shown, by applying the saddle-point approximation 
again, that the physical interpretation of m, are order parameters given by 

This calculation also shows that there is no ordering associated with the eigenvectors 
of zero or negative eigenvalues . Thus, we now have a finite set of order parameters 
with which to describe the different stable states of the system. Equations (9) and 
(10) are equivalent to the Curie-Weiss mean-field equations 

and therefore we can think of conditions (i) to (iii) as sufficient conditions for the 
Curie-Weiss equations to be valid for a given model. It is also possible to arrive at 
this result by deriving TAP (Thouless ef ai 1977, Mezard e1 ai 1967) type equations 
for a given model and showing that the Onsager reaction term is negligible. This 
approach would not directly bring out the role of the eigenvalue spectrum of the 
interaction matrix in the behaviour of the model but it is clear that the presence of 
the Onsager reaction term in the TAP equations can be associated with the divergence 
of the rank of the interaction matrix. 

In order to interpret many of the results already published on models satisfying 
conditions (i) to (iii) it is important to notice that there are two other ways in which 
the interaction matrix J can be diagonalized. These two other diagonalized forms 
of the interaction matrix also allow the application of the Gaussian transformation 
and the saddle-point technique to the partition function but result in different order 
parameters. Writing J in the non-orthogonal diagonalized form 

J = BABT ('2) 

... hnrn i :- A : n n n . r n l  --+A- ..,h:rk :r n ~ t  - n r + n a r ? n r l  frnm r h m  ~innn.mlnnr n F  I -:- w,,,,,., - 0 '. ",.,'SU.." ,,,',,.,A -.I.... Y .."L W . . . , . . I - L C "  &I"... *..- -.p.."P."" Y, ,. ,110 

type of general diagonalization can be performed using a singular or non-singular 
matrix B which is not unique (even when the eigenvalues are all distinct). When B 
is non-singular the rank of J is equal to the rank of A and when B is singular the 
rank of A is greater than that of J. As in the previous calculation we will only be 
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interested in the case where the rank of A is finite. Using a diagonalization of this 
type we can rewrite the Hamiltonian as 

Mean-field theory for long-range Ising spin models 

where ai  are the non-zero diagonal elements of A with corresponding N component 
vectors b, in B. We can now apply the Gaussian transformation to each of the Qi 

terms in the sum and go through the same type of calculation as we performed for 
the orthogonally diagonalized interaction matrix. This will give us order parameter 
type mean-field equations of the form 

The variables y, will be linearly independent when B is non-singular and will not be 
linearly independent when B is singular. This set of equations is totally equivalent to 
the orthogonal set of order parameter equations (9) and (10) and also the CurieWeiss 
equations under the appropriate linear transformations. Thus there is no unique set 
of order parameters which describe the thermodynamics of the system although one 
might consider the orthogonal parameter equations the easiest to interpret and solve. 
Solving the orthogonal order parameter equations (9) to first order in mp gives the 
well known result for Curie-Weiss mean-field theory that the critical temperature is 
equal to the largest eigenvalue. At this temperature the system condenses into a 
spin state, associated with the eigenvector of the largest eigenvalue, with a mean-field 
critical exponent of one-half. 

We will see in section 5 that the solutions in the literature of the separable site 
disorder spin glass models can, in general, be interpreted as a diagonalization of 
the interaction matrix of one of the three types we have mentioned, Le. orthogonal 
diagonalization or diagonalization with a singular or non-singular matrix. For the 
van Hemmen model in particular, we will show explicit forms of these three types of 
diagonalization which have been used to solve it in the literature. 

3. Long-range ferromagnetic bond disorder models 

In this simple example we will look at a ferromagnetic bond disorder model which 
satisfies conditions (i) to (iii). Bond disorder models are systems where each bond 
is chosen from some probability distribution and should be distinguished from site 
disorder problems where the interactions are calculated from random vectors sitting 
on each site (whose components are chosen from a probability distribution). Site 
disorder models will be studied in more detail in section 5. The model we are going 
to consider here has bonds given by the probability distribution 

so that c is the concentration of bonds. We will study the case where c is finite so 
that we are not in the regime where we expect to see percolation phenomena since 
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the percolation threshold for infinite range models is c,: = 0 (see Stinchcombe (1983) 
for a review with references of percolation phenomena in low-dimensional models). 

The semicircular eigenvalue spectrum for a large square matrix of elements de- 
termined from a probability distribution with fixed variance. (all elements having the 
same variance) and mean zero was first determined by Wlgner (1967) (for a deriva- 
tion of this law see Mehta (1967)). Edwards and Jones (1976) then used a replica 
we calculation to rederive Wigner’s result and also to extend it to the case where 
the mean is non-zero. They performed their calculation for a Gaussian distribution 
and found that the eigenvalue spectrum only depends on the first two moments of 
the distribution. Their results can easily be shown to be valid for any probability dis- 
tribution with fixed variance and mean. They found that for a probability distribution 
with mean M / N  and variance J 2 / N  in the limit N -+ m the eigenvalue spectrum 
of the corresponding N x N matrix is given by 

where 

Thus the effect of the non-zero mean introduces a single eigenvalue which splits away 
from the semicircular continuum when IMI > J. 

The mean of our probability distribution given by equation 15 is c / N  and the 
variance is c ( l  - c)/N’. This gives, in the notation used for the eigenvalue spectrum, 
M = c and Jz = c( 1 - c ) / N .  This means that all the eigenvalues lying in the 
semicircle are of order 1 / 0  and in the thermodynamic limit we have only one non- 
zero eigenvalue; the one that is not part of the semicircle and is given by A, = c. 
Thus this gives a quantitatively different (and very simple) system compared to models 
where the variance and mean are both of order 1 / N  such as the SK spin glass model 
(Sherrington and Kirkpatrick 1975, 1978). It is easy to show that to corrections of 
order 1 / N  the normalized eigenvector associated with A, is VA = l/n. This 
means that the system has only one order parameter which is the magnetization whose 
value and physical interpretation are given by equations (9) and (10) i.e. 

Therefore the system undergoes a ferromagnetic phase transition at kT, = c. This 
model behaves the same (at finite temperature) as a non-diluted ferromagnetic model 
with all the interactions given by J i j  = c / N  V i , j .  This non-diluted model has the 
same non-zero eigenvalue with associated eigenvector as our diluted model. It should 
he noted that at zero temperature the semicircle of N - 1 eigenvalues of order 
l/m can contribute to the saddle-point integral so that we may expect a large 
number of metastable states, possibly exponential in N (like the SK spin glass), at 
zero tem erature. These metastable states will he separated by energy barriers of 
order P N which are removed at finite temperature. This is in contrast to the SK 
model where the energy barriers are of order N and survive at finite temperature. 
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Fiially it should be noted that any bond disorder system whose mean is of order 1 / N  
and variance of order 1 / N 2  will behave in the same way as this model. Another 
example of a probability distribution having the first two moments of these orders is 
the folded Gaussian distribution where only the positive half of a Gaussian distribution 
of zero mean defines the interaction strengths. 

Mean-field theoty for long-range Ising spin models 

4. One-dimensional model with interactions Jij = yexp(-+ - jl), 7 - 0 

Kac (1968) and Baker (1961, 1962) studied a onedimensional model of this type and 
showed that in the limit (y  + 0)  this model has a mean-field type phase transition. 
Kac showed this property by looking at the asymptotic degeneracy of a certain integral 
equation in this limit. We will now look again at this model in terms of the eigenvalue 
spectrum of the interaction matrix. Our calculation will give us no information about 
the case y # 0 but will show that the model is described by CurieWeiss mean-field 
theory in the limit y -+ 0 

Considering a model with one-dimensional translational invariance we can write 
down the interactions as J ( r )  = yexp(-yr) where r = li - j l  and J ( r )  = 
J ( N  - T ) .  Working with Fourier components this gives us, for the eigenvalues 
of the interaction matrix, 

A, = J ( r )  exp 27rirq (19) 
r 

where q are the reciprocal lattice vectors 
N - 1  

and r = O , 1 ,  ..., N - 1 .  
1 2  

q = o , -  
N ’ N  N 

In Kac’s calculation he first takes the limit N - 00 and then later the limit y - 0. 
These two limits result in a matrix of finite rank but to apply the saddle-point method 
to the integral we have to perform the calculation in a more restrictive way by forcing 
y - 0 at the same time as N - CO. Applying the limit N + 00 alone to the 
interaction matrix gives of order N non-zero eigenvalues so we cannot directly apply 
the saddle-point method to evaluate the partition function as condition (i) is violated. 
If we choose y + 0 such that, as N - CO, y N  + 00 then the interaction matrix only 
has one non-zero eigenvalue given by 

(20) 
1 

A, f 0 (A,+, = 0) = - V i .  fl 
These limits are equivalent to Kac’s as in first taking the limit N -+ 00 before the 
limit y - 0 he assumes terms of the form N y  also tend to infinity. These limits also 
have a more physical motivation since if, for example, we had chosen y to scale as 
1 / N 2  (giving N y  - 0) then each spin would have N interactions of order 1 / N 2  
and so there would be no phase transition at a finite temperature and the spins would 
behave as if they were uncoupled. The special case Ny -+ a (when N -+ 00, y - 0) 
where a is finite gives an interaction matrix of finite rank, the rank now being greater 
than one. Thus this system is still described by Curie-Weiss mean-field theory and 
it behaves the same as the case Ny -+ m having a ferromagnetic phase transition 
associated with the largest eigenvalue A,. 

Finally, we note that our model is described by only one order parameter which is, 
as in the previous example, the magnetization (given by m, = tanhpA,m,). It thus 
behaves in the same way as a long-range ferromagnetic model with J i j  = A, /N  V i , j .  
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5. Site disorder spin glass models 

We now come to the largest class of models, which have been studied in the literature, 
whose interaction matrix (in the case of the separable models) satisfies conditions (i) 
to (5) .  Long-range site disorder spin glass models (Benamira el a1 1985, van Hemmen 
et a1 1986, Grensing and Kiihn 1987) typically have interactions given by 

J i j  = 

where the ti  are stochastic variables of length p with each element chosen from the 
set A, = { a l ,  a2,. . . ,a,) with Some probability distribution and g is a bilinear 
function of the vectors ti and E j .  Some papers (van Hemmen 1986, Grensing and 
Kiihn 1986) also discuss the more general case where g is a symmetric function of 
the site randomness but we will leave the discussion of these models to the end of 
this section. 

We will now proceed by directly diagonalizing J to give a simple proof of the 
upper bound of the rank of J and hence the maximum number of order parameters 
required to describe the system. If we construct an N x p matrix, which we shall call 
t, where the ith row is given by ti then we can write the interaction matrix as 

J = UtT 
where .7 is the symmetric p x p matrix which defines the bilinear function g. Diago- 
nalizing 3' = QLfQ' we can rewrite J as 

J = € Q L f ( € Q ) '  (23) 

thus, since the maximum rank of 3 is p, the maximum rank of J is also p. Thus 
the maximum rank of J is independent of n, the number of variables from which 
each element is chosen. Depending on the choice of the set A, and the choice of .7 
equation (23) will be a diagonalization of the interaction matrix of one of the three 
forms discussed in section 2. For the most interesting models in the site disorder class 
R(J) = p (see for example the van Hemmen model in the next section). It should 
be noted that Grensing and Kiihn (1987) showed that the maximum number of order 
parameters required to describe site disorder systems is p. Their calculation is more 
complicated than the one presented here and involves rewriting the Hamiltonian in 
terms of disjoint sublattices which reduces the problem to the diagonalization of an 
np x np matrix. Their calculation, as can most of the solutions of the separable site 
disorder spin glass models, can be regarded as a diagonalization of the interaction 
matrix. Thus, when p is finite (the 
separable models) the interaction matrix satisfies conditions (i) to (iii) and the system 
is described by the Curie-Weiss mean-field equations. The system is then described 
by a finite number of orthogonal order parameter equations (see equations (9) and 
(10)) and only has a finite number of stable states. When p is of order N then R ( J )  
is, in general, of order N and the system can exhibit 'true' spin glass behaviour in the 
sense that it can have of order N or more stable states which are not related by global 
rotation (Choy and Sherrington 1984). The Hopfield neural network storing of order 
N patterns ( h i t  el a1 1985). J i j  = 1 / N  E',=, .$<: where t: is randomly chosen 
to be $1, is an example of a site disorder model of this type which exhibits true 

Details of this are given in the appendix. 
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spin glass behaviour. This crossover, in random site models, to random bond type 
spin glass behaviour when p is of order N had already been studied by Benamira 
er al (1985). They studied this crossover in the context of the extensivity of the 
logarithm of the characteristic function of the random couplings. The extensivity of 
the logarithm of the characteristic function is linked to the divergence of the rank of 
the interaction matrix as is ‘true’ spin glass behaviour. In fact we can think of the 
divergence of the rank of the interaction matrix in the limit N -+ 03 as a necessary 
condition for a system to have ‘true’ spin glass behaviour. We will now illustrate some 
of the points in this section by studying the van Hemmen model. 

The van Hemmen model (van Hemmen et a/ 1983, Grensing and Kuhn 1987) is 
usually defined in the following way, 

Mean-fild theory for long-range Ising spin models 

where ti and qi denote the components of the two-dimensional vector ( p  = 2), Ci (in 
the notation of equation (21)). The model is normally defined with ti and vi k i n g  
given by the same probability distribution and having zero average hut, as we will see, 
these choices do not change the rank of the interaction matrix which is 2. It should 
be noted that often the van Hemmen model is defined as having a ferromagnetic 
interaction J , / N  added to the site disorder part. For simplicity we have omitted this 
term but it is easy to show (for all site disorder models (p finite) defined by equation 
(21)) that this term increases the rank of the interaction matrix by one. 

There are many calculations solving the van Hemmen model (Grensing and Kuhn 
1987, Choy and Sherrington 1984) using the saddle-point technique to evaluate the 
free energy. The relation between these calculations is easy to undcrstand when it 
is realized that there are many different ways to diagonalize the interaction matrix J 
and then apply the saddle-point technique. One example is the method used by Choy 
and Sherrington (1984) where they write the Hamiltonian in the separable form 

(25) 

Where we choose J i i  = 2 / N E i v i  which, as discussed in section 2, does not affect 
the thermodynamia of the system. This is a diagonalization of the third type (as 
defined in section 2) by a singular matrix giving a number of separable terms higher 
than the rank of the interaction matrix. This means that the three order parameters 
introduced by a Gaussian transformation are not linearly independent. In fact, later 
in their paper they reduce the number of order parameters to two via a linear 
transformation. Grensing and Kiihn (1987) formulated this model using their method 
of disjoint sublattices (see appendix). For this model their calculation corresponds 
to an orthogonal diagonalization or a diagonalization with a nonsingular matrix 
depending on the probability distribution defining ti and vi. 

The diagonalization procedure given in equation (23) can also be used to write 
the Hamiltonian in the separable form 
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This form is, in general, not orthogonal (see next paragraph). This type of 
diagonalization leads to mean-field equations of the same form as those given by 
Grensing and Kiihn (1987) (see equation (38) in their paper). 

A direct orthogonal diagonalization of the van Hemmen interaction matrix gives 
the following two non-zero eigenvalues and corresponding normalized eigenvectors 

where 

T =  J" ci 9?' 

The van Hemmen model is thus solvable for any choices of the ti  and 9; provided 
conditions (ii) and (iii) are met. Its orthogonal mean-field equations are given by 
equations (9) and (10) with the eigenvectors and eigenvalues defined by equation (27). 
These equations are, as stated in section 2, equivalent to the Curie-Weiss mean-field 
equations, and any of the other mean-field type equations stated in the literature 
(van Hemmen et al 1983, Choy and Sherrington 1984). under a linear transformation. 
Thus the model has a second-order phase transition at kT, = A, where it condenses 
with a critical exponent of one-half into the state associated with the eigenvector V,. 
Detailed solutions of the order parameter equations for a few different probability 
distributions plus a ferromagnetic component in the interaction were presented in 
van Hemmen er al (1983). Our orthogonal solution of this model extends some of 
the results presented in this paper which are only valid for probability distributions 
having zero mean and fixed variance. 

In the literature (van Hemmen el a1 1983, Choy and Sherrington 1984) the order 
parameter equations of this model are usually written in terms of the two parameters 
q1 = ( l / N ) x l ( i ( S i )  and q2 = ( ~ / I V ) E , ~ ~ ( S ~ )  rather than their orthogonal 
forms. These are usually referred to as the natural order parameters of the system 
(Grensing and Kiihn 1986). This brings up the question of what are the best set of 
order parameters to represent the system. It is true that, algebraically speaking, the 
order parameter equations are, in general, easier to derive in terms of q, and qz but 
these equations do not immediately yield the phase transition point and can be more 
difficult to solve than the orthogonal equations. 

Returning now to the more general case where the function 9 (see equation (21)) 
is a symmetric function. For these models we cannot perform the direct diagonal- 
ization (see equation (23)) which worked for the bilinear models. In this case the 
technique of breaking up the system into disjoint suhlattices, developed by Grensing 
and Kiihn (1986, 1987 plus the appendix in this paper), can be used to diagonalize 
the interaction matrix. This calculation shows that R,,,(J) 6 n p  where n is the 
number of elements from which each component of Ei is chosen. Therefore the rank 
of the interaction matrix can now change with the probability distribution and it is 
only systems where n p  is finite that can be solved hy orthogonal diagonalization of 
the interaction matrix. Van Hemmen CI 01 (1986) have used other techniques to solve 
models where n p  is of order N and find order parameter functions as solutions. 
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6. Conclusion 

The basic result of this paper is to show that the saddle-point mean-field 'ype cal- 
culation can be reformulated in terms of the eigenvalues and eigenvectors of the 
interaction matrix. This calculation gives a systematic way to study the so called 
separable models such as the site disorder spin glasses. This calculation also shows 
that many of the solutions of these models in the literature can be regarded as a 
diagonalization of the interaction matrix and in this mntext the relation between 
the different solutions becomes more transparent. Our calculation also shows that a 
sufficient condition for the Curie-Weiss mean-field equations to be valid is that the 
rank of the interaction matrix is finite (in the limit N + m). We also find that a 
necessary condition for 'true' spin glass behaviour is that the rank of the interaction 
matrix is divergent in the thermodynamic limit. 

The formulation of the saddle-point integral in terms of the eigenvectors and 
eigenvalues also facilitates the study of a generalized class of long-range ferromag- 
netic models. Unlike the bond disorder ferromagnetic model these systems have 
some structure in their interactions which leads to stable states other than the pure 
ferromagnetic stable states. The study of these models will be the topic of a future 
paper (Canning 1992). 

Meamfield Iheoty for long-range Ising spin models 
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Appendix 

In this appendix we show that the technique employed by Grensing and Kiihn (1986, 
1987) to solve separable sitedisorder spin glass models can also be interpreted as a 
diagonalization of the interaction matrix. We will follow the same notation as that 
used in Grensing and Kiihn (1986) (refer to this paper for a definition of the problem 
and the symbols we will use). If we define the disjoint sub-lattices via vectors given 
by, 

where the sets 0, are the disjoint sublattices then the interaction matrix can be 
written as 

J 
' J  N 

J . .  = - v,,,M;M$,. 
771 

M ,  = C M I S i .  (3') 
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Following their orthogonal diagonalization of VT7, = E, Q;A,Qy we can then 
rewrite the interaction matrix in the diagonalized form 

where, in the notation of equations (12) and (13) in this paper, a, = A, and b6 = 
Q:M;.  Since the rank of V is n p  this shows that the maximum rank of J is also 

n p .  In general the diagonalized form given by equation (32) is not orthogonal but it 
is easy to show that it is orthogonal when all the disjoint sublattices are of the same 
size. 
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